On improvements to CI-based GMM selection
نویسندگان
چکیده
Gaussian Mixture Model (GMM) computation is known to be one of the most computation-intensive components of speech recognition. In our previous work, context-independent model based GMM selection (CIGMMS) was found to be an effective way to reduce the cost of GMM computation without significant loss in recognition accuracy. In this work, we propose three methods to further improve the performance of CIGMMS. Each method brings an additional 5-10% relative speed improvement, with a cumulative improvement up to 37% on some tasks. Detailed analysis and experimental results on three corpora are presented.
منابع مشابه
On Improvements to CI-bas
Gaussian Mixture Model (GMM) computation is known to be one of the most computation-intensive components in speech decoding. In our previous work, context-independent model based GMM selection (CIGMMS) was found to be an effective way to reduce the cost of GMM computation without significant loss in recognition accuracy. In this work, we propose three methods to further improve the performance ...
متن کاملAn improved GMM-based voice quality predictor
A voice quality prediction method based on Gaussian mixture models (GMMs) is improved by constructing a feature selection algorithm to provide the best GMMbased prediction quality. The proposed sequential selection algorithm performs N -survivor search, allowing for trading between design complexity and performance. Simulation shows that predictors designed using the proposed algorithm outperfo...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملA Statistical Sample-Based Approach to GMM-Based Voice Conversion Using Tied-Covariance Acoustic Models
This paper presents a novel statistical sample-based approach for Gaussian Mixture Model (GMM)-based Voice Conversion (VC). Although GMM-based VC has the promising flexibility of model adaptation, quality in converted speech is significantly worse than that of natural speech. This paper addresses the problem of inaccurate modeling, which is one of the main reasons causing the quality degradatio...
متن کاملSpeaker Recognition on Single- and Multispeaker Data
We discuss Dragon Systems’ approach to the NIST Speaker Recognition tasks. For the one-speaker task, we employ a combination of methods: a basic GMM system and two LVCSR-based systems, one using standard mixture models and the other using nonparametric techniques. We discuss some explorations of the recently introduced two-speaker tasks based on the GMM system alone. “Cheating” tests using NIST...
متن کامل